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Abstract

In recent years the lift-and-project approach has been used successfully within a branch-
and-cut framework to solve large. difficult pure and mixed 0-1 programs that have resisted
solution efforts by pure branch and bound codes. The approach uses a linear description in
a higher dimensional space of the convex hull of the disjunctive set created by imposing one
or several 0-1 conditions. By solving a linear program derived from this higher dimensional
representation - the cut generating linear program (CGLP) - the standard lift-and-project
procedure obtains a deepest cut in a well defined sense. We propose a modification of
CGLP that allows us to generate not just one deepest cut. but a class of cuts with desirable
properties, each at the cost of one extra pivot in the optimal tablean of the modified CGLP.



This paper investigates a certain enhancement of the lift-and-project approach. The
underlying research has its immediate background and starting point in the work reported
in [5] and [6], and is part of a larger project pursued jointly with Sebastian Ceria and Gerard
Cornuéjols. It has some connections with the work of Lovész and Schrijver [11] on matrix
cones, the work of Sherali and Adams [12], but primarily with the work on disjunctive
programming [1, 2, 3] done in the 70’s. An early version of the material discussed here was

circulated under [4]. For some related work on lift and project see {7, 9, 10, 13].

The lift-and-project approach to mixed 0-1 programming relies primarily on the following
two ideas (results), both of which have their roots in the work on disjunctive programming,
i.e. on optimization over unions of polyhedra, done in the seventies ([1]; see also [3] for 1

below, and [2] for 2 below).

1. There is a compact representation of the convex hull of a union of polyhedra. Namely,
given polyhedra P, := {x € R" : A'z > b’} # 0, i € Q. the closed convex hull of

Uie@F is the set of those = € IR™ for which there exists vectors (y',33) € R"!, i € Q

such that
r-Y (y:i€Q) = 0
Ay —byy > 0 i€Q
% = 0
dy:i€Q) = 1.

The number of variables and constraints in this representation is linear in the number

|@Q| of polyhedra in the union.

2. The closed convex hull of the feasible 0-1 points of a mixed 0-1 program

min{cz : Axr > b, x>0, z; € {0,1}, j € N; C N} (1)



can be generated by imposing the 0-1 conditions successivelv. Namely. let 5;...., 5,
be an arbitrary partition of Nj. and for7=1..... p. let Q, index the collection of 0-1

vectors with components in S, (i.e.. |Q,] = 2!%!). Further. let
Ko:={r€R":Ar >b 2>0. 7; <1. j€ N}
and define recursively
K;:=conv(K;_;Nn{re R" .r;€ {0.1}. y€ 5}
i=1,...,p, where for any set W', conr(11") denotes the closed convex hull of W". Then

K, =conv(Kon{r e R" :r, € {0.1}, j € N\}).

Conceptually. the lift-and-project approach is supposed to work as follows. Let Ar > b

denote the system in IR” defining K.

0.1.

0.2.

0.3.

Solve the LP over K

Choose S; C N and lift the problem into IR"*!?1("+1) by replacing Ar > bwith a linear

system in 7 and {y', yj }icq, defining the convex hull of Ao {r :7; € {0.1}. j € Si}.

Project the system onto IR" (the x-space). Let a*r > p". h € T;. be the set of
] \ P

projected inequalities that together with Ar > b define R

Iterate the procedure. At step t. do

t.1.

t.2.

Solve the LP over R;_;.

Choose S; C Nj \ U!Z1S; and lift the problem into R"*Q!(*+1) by replacing the con-
straints of K;_; with the linear system in 7 and {y'. ¥ }icq, defining the closed convex

hull of K,y N {r:x; € {0.1}, j € 5}.



t.3. Project the system onto IR" (the z-space). Let a"z > B", h € T;, be the set of

projected inequalities that together with those of K;_; define K.

After p iterations, this procedure should in principle yield the optimum over the closed

convex hull of K, i.e. the solution to the mixed integer program.

In practice, such an approach is not workable, since at every iteration the number of
projected inequalities oz > 8", h € T, is exponential in n. Therefore the standard lift-and-
project procedure of [5], [6] generates just one member of the family indexed by T;, namely
the inequality that provides a “deepest cut” in that it cuts off the optimal LP solution ¥

over K;_; by a maximum amount.

This procedure, suitably embedded into a branch-and-cut framework where cuts are
generated at various nodes of the search tree and made globally valid through a cut-lifting
step, has been implemented and extensively tested; primarily in [6], but also in [7, 8, 14]
among others. In 6], the branch-and-cut code MIPO using lift-and-project cuts was tested
on a battery of 29, mostly difficult, mixed 0-1 programs obtained from MIPLIB and from the
literature, and shown to be able to solve all 29 probléms in computing times that compare
favorably with OSL, CPLEX and MINTO. In [7] the same approach with some added features
was tested on maximum clique problems from the Second DIMACS Challenge. In [14].
S. Thienel compares the performance of his ABACUS branch-and-cut code in two different
modes of operation, one using lift-and-project cuts and the other using Gomory cuts, with
the outcome that the version using lift-and-project cuts is considerably faster on all hard
problems, where hard means requiring 10 or more minutes. Finally, in [8] the authors report
that in the framework of a parallel branch and cut code which uses a variety of cuts, adding

lift-and-project cuts for the harder problems helped solve them faster.

As mentioned earlier, the standard lift-and-project approach generates one deepest cut

whenever it solves a cut-generating linear program. The objective of the research discussed
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here is to find a middle ground between the two extremes of generating all the inequalities
a"rz > B, h € T,. and generating just one deepest cut. This middle ground is defined as
generating all those inequalities of the family indexed by T, that are tight for the optimal

solution 7 of K;.

Consider the mixed 0-1 program (1) and its linear programming relaxation

min{cr : Ar >b. 7; <1. jE N, 7, >0. j€ N}

= min{cr : Ar > b}.
Let S C N; and define

Ps :=conv {r € R" : Ar > b. r; € {0.1} for j € S}.

Then there exist inequalities a?r > ", h € T, such that
Ps:={reR": a"v>p" heT,
but these inequalities are exponentially many and not readily available.
Problem. Given 7 such that
¢t = min {cr: 1 € Ps},
find the inequalities o’z > #". h € T' C T that are tight for 7.

Application. If S is “small”, & can be found. for instance. by branch and bound. Solving
the above Problem would then enable us to replace (LP) by min {cr . Ar > b, otz >
B", h € T'}. whose solution & has #; € {0,1}, j € S. and repeat the procedure for some
S” € Ny \' S. In other words. solving the above Problem is a way of “consolidating” the

results of a partial branch and bound run into a tighter LP relaxation.

Discussion. Let @ index the collection of all 0-1 vectors with components in S, ie. |Q| =



211, Consider the extended formulation of Ps in n 4 |Q|(n + 1)-dimensional space:

.PS = {reR:x - Yy =0
. 169 . -~ .
Ay — by 2 0, 1€@Q
Yy =1 }
M 1€Q

Here b’ := ( ;’1), where §° is defined as follows. If the original right hand side is written as
b= ( 6"0), where 6° € {0, —1}"*P, with the first n components equal to 0 and the remaining
p components equal to —1, then § corresponding to the i-th 0-1 vector indexed by Q is
obtained from 6° by changing the —1 in é° to 0 in &' for all those variables that have to
be forced to 0, and changing the 0 in 6° to 1 in & for all those variables to be forced to 1.
Notice that the constraints yj > 0, 7 € @, have been omitted, as they are implied by the

other inequalities.

To express Ps in x-space, consider the projection cone

a — uA = 0
W =< (a, {ui}ieQ,ﬁ) Wb — B =0 i1€Q
u'>0

The inequalities a"r > B" defining Ps in 7-space correspond to the (a, 3)-components
of the extreme rays of W. The task is to identify those extreme rays of W that give rise to

inequalities a”x > " satisfied at equality by 7.

Solution. Define the linear program

maxf — af
- a 4+ YA =0
B - Wb =0 ieQ (LD1(%))
dule < k
‘ i€Q
. u >0 1€

where k >0 and e= (1,...,1).



Theorem 1 The inequalities a’x > B" of Ps satisfied at equality by 7 are precisely those

corresponding to the (a.f3)-components of optimal solutions to (LDI1(¥)) such that a # 0.

Proof. The feasible set of (LD1(7)) is the cone 11" truncated by the inequality 3 e u;e < k.
a normalization device. Basic solutions to (LD1(7)) such that a # 0 are in 1-1 correspon-

dence with extreme ravs of 11". Consider now the linear program dual to (LD1(7)).

min ky

_Zy:‘ = -7

iGQ . -
Ay — by + e 2 0. i€Q (LP1(%))
Y v =1
1€Q
¥y > 0.

(LP1(#)) has an optimal solution of the form 7'+ = 7. gy = 1 for the particular i, € @ that
corresponds to 7 (i.e. for the unique 7, such that D'-7 > d'). and (', %) = (0.0) for all
i€ @\ {i.}, 3 = 0. Hence (LP1(7)) has an optimal solution with value 0. Further. notice
that ) can be pivoted into the basis with value 0. i.e. without changing the solution. It
follows that (LD1(7)) has an optimal solution of value 0 for with 3,cou’e = k.i.e. (LD1(7))
has a nonzero optimal solution with value 0. The (a, #)-component of such a solution defines

an inequality satisfied at equality by 7 if and only if a # 0.0

Thus one wayv of solving our problem is to generate nonzero basic optimal solutions to
(LD1(%)) satisfving 3,cou’e = k. Although (LD1(7)) is large. it has a strong structure that
Ying 2.ieQ g g g

can be exploited.

Working in a subspace. We should mention at this point that. as in the case of the lift-
and-project procedure described in [5]. (LD1(#)) can be restricted to the relevant subspace,
and the inequalities obtained in this fashion can be lifted into the full space by the same
technique as in [5]. For our purposes F', the index set of the relevant subspace. will be defined

slightly differently. so as to always contain S. although the components of 7 indexed by S



are not fractional. Also, we will assume w.l.o.g. that for j € S. 7; = 1 implies that ; is
basic; and for j € S, if Z; is nonbasic then #; = 0 (i.e. all nonbasic 7; at their upper bound,

if any, have been complemented). We define
F=SU{jeN\S:z; >0},

and we will denote by T the subvector of ¥ with components indexed by F. The matrix
Ap is obtained from the matrix A by deleting the columns indexed by N \ F and the rows
corresponding to the inequalities z; > 0 and —x; > —1 for j € N\ F. Further, the vectors br
and Efp, 1 € @, are obtained from band b, i € Q. by removing the components corresponding
to the inequalities x; 2 0 and —z; > —1 for j € N\ F. The problem (LD1(%)) can then be

replaced by
mar f — aTf

- & + Ui/ip=0

B - ubp =0 i€Q (LD1(xp))
S ule < k
i€Q

u' >0, 1€Q
where a and v, i € @, have been redimensioned according to Ar and are to be read as

shorthand for ar and uk., i € Q.

Elimination of (a,3). Now let i, € @ be the index associated with 7, i.e. the (unique) ¢
such that Ay’ > b is satisfied by #. Using a = u* A and 8 = u'bi: to eliminate a and 3,
and imposing equality in the last inequality, (LD1(7r)) can be restated as

min u® (AF.’EF - i)};)

ui‘AF —_ uiAF = 0
_ ui b + wh = 0 i€Q\{i) (LDI(xr))
Y ule = k
- iEQ
u >0,i€Q

Proposition 2 A feasible solution {u'}icq to (LD1(ZF)) is optimal if and only if
(Arirp); > (bF); = vl =0.
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Proof. From the foregoing discussion. the optimum of (LD1(7f)) has value 0.0

While (LD1(7¢)) has fewer variables than (LD1(#f)). this latter formulation has the
advantage of having the values of a and 8 readily available when needed. Further. since
a, f are unconstrained in sign. they can be made part of the starting basis when solving
(LD1(#¢)) and kept in the basis till the end. so that their presence does not affect the

number of pivots. Therefore we will prefer to work with (LD1(7F)).

Generating inequalities. It is easy to sec that optimal solutions to (LD1(7¢)) are highly
dual degenerate, i.e. there are typically many different optimal solutions. In fact, from the
proof of the above Theorem. it follows that all the reduced costs corresponding to u; for all
jand i€ @\ {i,} are 0. since these reduced costs are the slack variables of the inequalities

Aly' — byl > 0 of (LP1(7)F).

It should be noted at this point that while the complete set of inequalities ahr > g,
h € T'. tight for 7. obviously cuts off the optimal solution 7 to (LP). this is not necessarily
the case for each individual inequality indexed by T”. In order to generate inequalities that
are guaranteed to cut off #. one may add to the constraints of (LD1(7f)) the inequality
B — arfp > € with some small € > 0. One advantage of doing this is that it also guarantees
a # 0. Thus generating the inequalities ar > 3 of Ps that are tight for 7 can be done hy

the following procedure:

1. Solve (LD1(7f)).

2. Find alternate optimal solutions by pivoting into the basis. one at a time. nonbasic
variables with zero reduced cost for which the minimum ratio (of the primal simplex

method) is nonzero.

3. For each new vector (a.f) obtained in this way. use the “minimum required angle”

criterion to discard inequalities too close to some earlier inequality.
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4. Lift each inequality into the full space.

An efficient implementation of this procedure may take advantage of the special structure
of LD1(Zf). Although this linear program is relatively large (|@Q| 4 1 times the size of the
original LP restricted to the subspace of the variables indexed by F'), on the other hand is

highly structured. Indeed, the coeflicient matrix of LD1(Zr) has the general form

{ Q| blocks

| A
o -I| 4% o - 0
o -1\ 0 AL 0
0 —-I| 0 0 AL
1 0 |=b" 0 0

0| 0 =7 0

1 0 0 0 ... —plT

where the |@| blocks in the upper part of the matrix are all identical, and the differences are
restricted to the last |Q| rows of the matrix, containing the right hand side of each term in

the disjunction.

Note that in the absence of any special structure |Q| = 2'%/, i.e. the number @ of terms in
the disjunction underlving LD1(%f) is exponential in the number |S| of 0-1 variables being
arbitrated. However. the presence of some structure can cut down this number drastically,
in some cases making |Q| linear. rather than exponential, in |S|. For instance, if the system
Ar > b contains an inequality of the form z(S) < 1, i.e. a generalized upper bounding
constraint, then |Q| = |S| + 1, since xg, the subvector of = with components indexed by S.

is either one of the |S|-dimensional unit vectors or the |S|-dimensional zero vector.




Example 1.
min 2r; 4+ a9 4+ 3ry 4+ 1y

s.t.
4dr; + 4ro + 33 — 1y 2 3
-r; 4+ 2ry — 2r3y + 31y > 1
Ty — T 4+ 2r3 4+ 214 2> 1

r>0, r;€{0.1}. j=1.2.3
The optimal solution to the LP relaxation (in which 7, € {0.1} isreplaced by 0 < 7, < 1,

j=1,2,3)is 7 = (0.578. 0.270. 0, 0.346).

We choose S := {1,2}. i.e. impose the condition x; € {0.1} for j = 1,2. and we find
the optimal solution 7 = (0,1,0.1) to the LP relaxation subject to this condition. Thus we

define
F = Su{jeN\S:7,>0}
= {1.2.4},

and work with the problem (LD1(7¢)):

min8 - af

- a + AL =0

- a + /17}112 = 0

- + fifuii = 0

- o + ALuvt = 0

B biT ! = 0

p - b =0

¢ - bR = 0
eTu' + eTu? + eTud + eTut = 10

Here



and

4 4 -1 3 3 3

- 2 3 1 1 1 1

1 -1 2 1 1 1 1

~ 1 1 1

Ap = R L S L S
1

-1 -1 -1

-1 -1 -1

where the blanks represent zeros.

Solving (LD1(#F)) yields an optimal solution whose (a, 3) components are
oq = 0.559, as; =0.102, a4 = 1.119, § = 1.221.

The lifting coefficient for a3 is easily seen to be 0, and dividing through with 8 to obtain a

right hand side of 1 yields the cut

0.4587; + 0.08419 + 0.916x4 > 1.

Performing several pivots in the optimal tableau according to the rules discussed above
vields the additional optimal solutions
ay Qo Qy B
0.875 0.448 0.957 1.407

0.654 0.218 1.307 1.525
0.976 0.650 0.976 1.626

In each case, the lifting coefficient for a3 is 0, and dividing through with 8 we obtain the
following three additional cuts:

0.623r; + 031972, + 0.681zy4
0.429r; + 0.1437, + 0837z > 1

0.600xr; + 0.400x, + 0.600ry > 1

vV
—_

Each of the above four cuts is satisfied at equality by 7. Each of them happens to cut

off .0
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Duplication of inequalities. One difficulty with the procedure outlined above is that it
will frequently generate multiples of the same inequality. This can happen in two different

ways:

1. A pivot may change some or all of the variables u’. i € Q. but leave the components

of a, 8 unchanged.

2. A pivot may change the components of (a.3) but change them proportionally, i.e. it

may leave the ratios a;/8. j € N. unchanged.

Both kinds of difficulties can be handled by an appropriate check of the pivot column, say g.
To avoid problem 1. one has to make sure that g has a nonzero entry in at least one of the
rows associated with the components of (a. ). To avoid problem 2. one has to make sure
that the ratios a;/ga,.. ... 0n/ga,,0B/g9s are not all equal. Here g,, (g3) denotes the entry of

g in the row containing a, (3).

It is not alwavs possible to avoid a pivot which changes the u' but leaves the cut ar > 8
essentially unchanged. If necessary, such a pivot must be performed in order to obtain

another working basis that vields access to a new set of pivots.

Generating facets of Ps. Under what circumstances do the inequalities generated by the

above procedure define facets of Pg?

To answer this question. we note first that when Ps is full dimensional. then the reverse

polar cone

Pg = {(a.B) € R :ar>fforalre Ps}

of Ps is pointed: which means that P§ is the conical hull of its extreme rays. Assume for the
time being that this is the case. Then the facets of Ps are in a one to one correspondence

with the extreme rays of Pi.
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On the other hand, from the representation of Pg in R"*?I"*1) given at the beginning
of our discussion, it follows that Pg also has a higher dimensional representation, namely
' Ju' >0, i € Q, such that
Pi={(a,f) € R*| a - WA =0
B — U =0, i€Q

The constraint set defining this higher dimensional representation differs from that of
LD1(Z) only in the absence of the normalization inequality. Adding this inequality replaces

the cone Pg with a polyhedron

( .o~ 3\

o — uA =0
B — uf =0 i€Q
> de < k

€Q
>0, 1€Q

Pi={(a,8) € R

whose extreme points (vertices) are in one to one correspondence with the extreme rays of

the cone Pg, hence with the facets of Ps.

But the polyhedron Pg is nothing but the projection onto the subspace of the (a, )
variables of the feasible set of (LD1(Z)). Thus the question that we started out with reduces
to the following: when does an extreme point (basic solution) (a®, 8°, {u'°}, i € Q) of the

feasible set of (LD1(%)) project into an extreme point (a®, 5°) of PL?

One answer to this question is that the (a?, 3°)-component of a basic feasible solution to
(LD1(#)) is an extreme point of P} if and only if there exists a linear function of (a, 8) that
attains its unique maximum at (a, 3) = (a?, 3°). A basic feasible solution to (LD1(%)) that
satisfies this criterion will be called regular (see [1] for a discussion). To check the regularity
of a basic feasible solution to LD1(7)), one may want to carry a second objective function
row. in which the vector (1, 7) is replaced by one, if it exists, that makes the (a, §) component
of an optimal solution unique, i.e. produces nonzero reduced costs for all nonbasic variables

whose pivoting into the basis would affect the (a, 3)-component. Methods for finding such a

13



vector or showing that none exists are currently under investigation. So far we have assumed
that Ps is full dimensional. When this is not the case. i.e. dim Ps = d < n. then Pg is not
pointed, hence has no extreme rayvs: and the dimension of its lineality space L is n —d. In this
case there is a one to one correspondence hetween facets of P and (n — d + 1)-dimensional
faces of Pg. Since the latter are not easy to handle. it is preferable in this case to work with
P§ N Lt, where Lt is the orthogonal complement of the lineality space L of P§~. PS; NLY is
a pointed cone whose extreme rays are in a one to one correspondence with the (n —d + 1)-
dimensional faces of P_é, hence with the facets of Ps. The analyvtical expression for this cone

is
> (@ forallr € Pg

ar
PinLt ={(a,f) e R ,
s (a.5) ar = 0 forallvel

where “all v € L” can be replaced by “all v € B(L)" for some basis B(L) of L. Note that

dim L = n — d and thus a basis B(L) has n — d elements.

When it comes to the polyhedron 133; the normalization inequality Y,cou'e < k effec-
tively bounds all the variables. including the components of (a.3); and thus the smallest
dimensional. i.e. (n — d + 1)-dimensional. faces of P} correspond to extreme points of Pi.
However, this correspondence is no longer one to one. as the same facet of Ps can now be
defined by different inequalities ar > B, corresponding to different extreme points of 132
Nevertheless. among all the equivalent inequalities ar > 8 defining the same facet of Ps.
there is only one (modulo a multiplicative factor) whose normal lies in L+. If we amend the

constraint set of 132 by the syvstem of equations
ar =0 for all v € B(L),

i.e. replace Pg with 13_3 N L1, we make sure that the correspondence between extreme points

of PEN Lt and facets of Pg are one to one.
We illustrate this last point on an example.

Example 2. The traveling salesman polytope P defined on the complete directed graph G

14



with 4 nodes has dimension 5 (= number of variables (12) minus rank of equality system
(2 x 4 - 1)). The 6 (affinely independent) tours of G are (1,2,3,4), (1,2,4,3), (1,3,2,4),
(1,3,4,2), (1,4,2,3), (1,4,3,2). One of the facets of P is defined by the inequality

T2+ T13 + T3 + T34 + 743 < 2,

known as Ty, which is satisfied at equality by 5 of the 6 tours, the exception being (1,4, 2, 3).

However, the same facet is also defined by each of the lifted 3-cycle inequalities

IA
N

Tiz + Ty + Ty + 27y

IN
N

Tiz + T + Ta t+ 2743

Tog + T4z + T2 + 273 < 2,
which are easily seen to be satisfied at equality by exactly the same 5 tours as the T
inequality. However, none of the above four inequalities has its normal vector in the subspace

L' generated by the tours. Indeed, every vector in L+ satisfies all the equations of the form

outdegree of i = outdegree of j
indegree of ¢ = indegree of j

outdegree of ¢ = indegree of j
indegree of ¢ = outdegree of j,

just as every tour does: the normals of these equations are all in L, the lineality space of Pt
However, none of the four inequalities defining our facet satisfies this system of equations.

The unique inequality that defines the same facet satisfies the system is
3710 + 2713 + 3791 + 2794 + 2739 + 3734 + 2741 + 3743 < 8.
Indeed, it is easy to check that this inequality (i) is valid, (ii) is satisfied at equality by

the same 5 tours as the above four inequalities, and (iil) satisfies the system of equations

defining L+.0
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